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OA •Abstract
0) rhis paper describes the main features of a view-based model of object recognition. The model tries to

M :apture general properties to be expected in a biological architecture for object recognition. The basic
%4 nodule is a regularization network in which each of the hidden units is broadly tuned lo a specific view

)f the object to be recognized. The network output, which may be largely view inaependent, is first
tescribed in terms of some simple simulations. The following refinements and details of the basic module
%re then discussed: (1) some of the units may represent only components of views of the object - the
)ptimal stimulus for the unit, its "center", is effectively a complex feature; (2) the units' properties are
:onsistent with the usual description of cortical neurons as tuned to multidimensional optimal stimuli; (3)
in learning to recognize new objects, preexisting centers may be used and modified, but also new centers
may be created incrementally so as to provide maximal invariance; (4) modules are part of a hierarchical
structure: the output of a network may be used as one of the inputs to another, in this way synthesizing
increasingly complex features and templates; (5) in several recognition tasks, in particular at the basic
level, a single center using view-invariant features may be sufficient.

Modules of this type can deal with recognition of specific objects, for instance a specific face under various
transformations such as those due to viewpoint and illumination, provided that a sufficient number of
example views of the specific object are available. An architecture for 3D object recognition, however,
must cope - to some extent - even when only a single model view is given. The main contribution of this
paper is an outline of a recognition architecture that deals with objects of a nice class undergoing a broad
spectrum of transformations - due to illumination, pose, expression and so on - by exploiting prototypical
examples. A nice class of objects is a set of objects with sufficiently similar transformation properties
under specific transformations, such as viewpoint transformations. For nice object classes, we discuss
two possibilities: (a) class-specific transformations are to be applied to a single model image to generate
additional virtual example views, thus allowing some degree of generalization beyond what a single model
view could otherwise provide; (b) class specific, view-invariant features are learned from examples of the
class and used with the novel model image, without an explicit generation of virtual examples.
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1 Introduction as illumination, pose and expression; b) other modules
provide the appropriate transformation from prototypes

In the past three years we have been developing sys- and synthesize a "normalized" view from the input view;
tems for 3D object recognition that we label view-based c) the normalized input view is compared with the model
(or memory-based, see Poggio and Hurlbert, 1993) since view in memory. Thus analysis and synthesis networks
they require units tuned to views of specific objects or may be used to close the loop in the recognition processobject classes.' Our work has led to artificial systems for by generating the "neural" imagery corresponding to a

solving toy problems such as the recognition of paper- certanein terpretation and eventually comparing it to the

clips as in Figure 3 (Poggio and Edelman, 1990; Brunelli input image. In the last section we will outline some of

and Poggio, 1991), as well as more real problems such the critical predictions of this class of biological models

as the recognition of frontal faces (Brunelli and Poggio, and discuss some of the existing data.

1993; Gilbert and Yang, 1993) and the recognition of

faces in arbitrary pose (Beymer, 1993). We have dis-
cussed how this approach may capture key aspects of the 2 The basic recognition module
cortical architecture for 3D object recognition (Poggio, Figure 1 shows our basic module for object recognition.
1990; Poggio and Hurlbert, 1993), we have tested suc- As Poggio and Hurlbert (1993) have argued, it is rep-
cessfully with psychophysical experiments some of the resentative of a broad class of memory based modules
predictions of the model (B9Slthoff and Edelman, 1992; (MBMs). Classification or identification of a visual stim-
Edelman and Bfilthoff, 1992; Schyns and Biilthoff, 1993) ulus is accomplished by a network of units. Each unit
and recently we have gathered preliminary evidence that is broadly tuned to a particular view of the object. We
this class of models is consistent with both psychophysics refer to this optimal view as the center of the unit. One
and physiology (specifically, of inferotemporal [IT] cor- can think of it as a template to which the input is com-
tex) in alert monkeys trained to recognize specific 3D pared. The unit is maximally excited when the stimulus
paperclips (Logothetis et al., 1994). exactly matches its template but also responds propor-

This paper is a short summary of some of our theo- tionately less to similar stimuli. The weighted sum of
retical work; it describes work in progress and it refers activities of all the units represents the output of the
to other papers that treat in more detail several aspects network.
of this class of models. Some of these ideas are similar
to Perrett's (1989), though they were developed inde-
pendently from his data; they originate instead from ap- x V
plying regularization networks to the problem of visual
recognition and noticing an intriguing similarity between
the hidden units of the model and the tuning properties
of cortical cells. The main problem this paper addresses
is that of how a visual system can learn to recognize an
object after exposure to only a single view, when the
object may newly appear in many different views corre- h • • • h .• • °
sponding to a broad spectrum of image transformations.
Our main novel contribution is the outline of an archi-

tecture capable of achieving invariant recognition for a ,.
single model view, by exploiting transformations learnedfrom a set of prototype objects of the same class.

We will first describe the basic view-based module and
illustrate it with a simple simulation. We will then dis-
cuss a few of the refinements that are necessary to make
it biologically plausible. The next section will sketch a F 40; ;-7.0

recognition architecture for achieving invariant recogni-
tion. In particular, we will describe how it may cope with Figure 1: A RBF network for the approximation of two-
the problem of recognizing a specific object of a certain dimensional functions (left) and its basic "hidden" unit
class from a single model view. Finally, we will describe (right). x and y are components of the input vector
an hypothetical, secondary route to recognition - a vi- which is compared via the RBF h at each center t. Out-
sualization route - in which a) class-specific RBF-like puts of the RBFs are weighted by the ci and summed to
modules estimate parameters of the input image, such yield the function F evaluated at the input vector. N is

'Of course the distinction between view-based and object- the total number of centers.

centered models makes little sense from an information pro-
cessing perspective: a very small number of views contains
full information about the visible 3D structure of an object Here we consider as an example of such a structure
(compare Poggio and Edelman, 1990). Our view-based label a RBF network that we originally used as a learning
refers to an overall approach that does not rely on an explicit network (Poggio and Girosi, 1989) for object recognition
representation of 3D structure and in particular to a bio- while discovering that it was biologically appealing (Pog-
logically plausible implementation in terms of view-centered gio and Girosi, 1989; Poggio, 1990; Poggio and Edelman,
units. 1 1990; Poggio and Hurlbert, 1993) and representative of



a much broader class of network architectures (Girosi,

Jones and Poggio, 1993).

2.1 RBF networks

Let us review briefly RBF networks. RBF networks are
approximation schemes that can be written as (see Fig-
ure 1; Poggio and Girosi, 1990b and Poggio, 1990)

N

f(x) = •_ch(lix - till) + p(x) (1)

The Gaussian case, h(llx - tjl) = exp(-(Ilx -

tll)2/2o' 2), is especially interesting:

"* Each "unit" computes the distance lix - tll of the
input vector x from its center t and

"* applies the function h to the distance value, i.e. it Figure 2: A RBF network with four units each tuned

computes the function h(llx - til). to one of the four training views shown in the next fig-
"bure. The tuning curve of each unit is also shown in the

* In the limiting case of h being a very narrow Gaus- next figure. The units are view-dependent but selective
sian, the network becomes a look-up table. relative to distractors of the same type.

"* Centers are like templates.

The simplest recognition scheme we consider is the
network suggested by Poggio and Edelman (1990) to The activity of the unit measures the global similarity
solve the specific problem of recognizing a particular 3D of the input vector to the center: for optimal tuning all
object from novel views. This is a problem at the sub- features must be close to the optimum value. Even the
ordinate level of recognition; it assumes that the object mismatch of a single component of the template may set
has already been classified on the basic level but must to zero the activity of the unit. Thus the rough rule im-
be discriminated from other members of its class. In the plemented by a view-tuned unit is the conjunction of a
RBF version of the network, each center stores a sample set of predicates, one for each input feature, measuring
view of object, and acts as a unit with a Gaussian-like the match with the template. On the other hand the
recognition field around that view. The unit performs an output of the network is performing an operation more
operation that could be described as "blurred" template similar (but not identical because of the eventual output
matching. At the output of the network the activities of nonlinearity) to the "OR" of the output of the units.
the various units are combined with appropriate weights, Even if the output unit may have a sigmoidal nonlin-
found during the learning stage. earity (see Poggio and Girosi, 1990) its output does not

Consider how the network "learns" to recognize views need to be zero when one or more of the hidden units
of the object shown in Figure 3. In this example the are inactive, provided there is sufficient activity in the
inputs of the network are the x, y positions of the ver- remaining ones.
tices of the object images and four training views are This example is clearly a caricature of a view-based
used. After training, the network consists of four units, recognition module but it helps to illustrate the main
each one tuned to one of the four views as in Figure 2. points of the argument. Despite its gross oversimpli-
The weights of the output connections are determined fication, it manages to capture some of the basic psy-
by minimizing misclassification errors on the four views chophysical and physiological findings, in particular the
and using as negative examples views of other similar existence of view-tuned and view-invariant units and the
objects ("distractors"). shape of psychophysically measured recognition fields.

The figure shows the tuning of the four units for im- In the next section we will list a number of ways in which
ages of the "correct" object. The tuning is broad and the network can be made more plausible.
centered on the training view. Somewhat surprisingly,
the tuning is also very selective: the dotted line shows 3 Towards more biological recognition
the average response of each unit to 300 similar distrac-
tors (paperclips generated by the same mechanisms as modules
the target; for further details about the generation of The simple model proposed in the previous section con-
paperclips see Edelman and Bialthoff, 1992). Even the tains view-centered hidden units.2 More plausible ver-
maximum response to the best distractor is in this case sions allow for the centers and corresponding hidden
always less than the response to the optimal view. The units to be view-invariant if the task requires. In a bio-
output of the network, being a linear combination of the
activities of the four units, is essentially view-invariant 2A computational reason for why a few views are sufficient
and still very selective. Notice that each center is the can be found in the results (for a specific type of features) of
conjunction of all the features represented: the Gaus- Ullman and Basri (1990). Shashua (1991, 1992) describes an
sian can in fact be decomposed into the product of one- elegant extension of these results to achieve illumination as
dimensional Gaussians, one for each input component. 2 well as viewpoint invariance.
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logical implementation of the network, we in fact expect
to find a lull spectrum of hidden unit properties, from
view-centered to view-invariant. View-centered units are
more likely in the case of subordinate level recognition
of unfamiliar not nice objects (for the definition of a
nice class, see later); view-invariant units would appear
for the basic level recognition of familiar objects. We
will now make a number of related observations, some
of which can be found in Poggio and Hurlbert (1993),
which point to necessary refinements of the model if it
is to be biologically plausible.

HIDDEN UNITS 1. In the previous example each unit has a center
".. .^". which is effectively a full training view. It is much

S • ""more reasonable to assume that most units in a
• '~ ". recognition network should be tuned to components

. ... of the image, that is to conjunctions of some of
4"t . the elementary features but not all of them. This

&C Is 2M• an M 2 7&0 3O should allow for sufficient selectivity (the above
1"M td*d network performs better than humans) and provide

"] •for significant robustness to occlusions and noise
an a "(see Poggio and Hurlbert, 1993). This means that

m OO the "AND" of a high-dimensional conjunction can
M ".% be replaced by the "OR" of its components - a

. .. face may be recognized by its eyebrows alone, or
u Iwo M0o a Uo M a mug by its colour. Notice that the disjunction

low [dea (corresponding to the weighted combination of the
NAA hidden units) of conjunctions of a small number

of features may be sufficient (each conjunction is
implemented by a Gaussian center which can be
written as the product of one-dimensional Gaus-

NETWORK sians). To recognize an object, we may use not only
templates (i.e. centers in RBF terminology) com-

I'M .............. prising all its features, but also, and in some cases
X.. t" solely, subtemplates, comprising subsets of features

,am " o... d ra.tor (which themselves constitute "complex" features).
i This is similar in spirit to the technique of supple-

menting whole-face templates with several smaller
templates in the Brunelli-Poggio work on frontal- so Isid •face recognition (see also Beymer, 1993).

2. The units tuned to complex features mentioned
above are similar to IT cells described by Fujita

Figure 3: Tuning of each of the four hidden units of the and Tanaka (1992) and could be constructed in a
network of the previous figure for images of the "correct" hierarchical way from the output of simpler RBF-
3D objects. The tuning is broad and selective: the dot- like networks. They may avoid the correspondence
ted lines indicate the average response to 300 distractor problem, provided that the system has built-in in-
objects of the same type. The bottom graphs show the variance to image-plane transformations, such as
tuning of the output of the network after learning (that translation, rotation and scaling. Thus cells tuned
is computation of the weights c): it is view-invariant and to complex features are constructed from a hierar-
object specific. Again the dotted curve indicates the aver- chy of simpler cells tuned to incrementally larger
age response of the network to the same 300 distractors. conjunctions of elementary features. This idea -

popular among physiologists (see Tanaka, 1993;
Perrett and Oram, 1993) - can immediately be for-
malized in terms of Gaussian radial basis functions,
since a multidimensional Gaussian function can be
decomposed into the product of lower dimensional
Gaussians (Marr and Poggio, 1976; Ballard, 1986;
Mel, 1992; Poggio and Girosi, 1990).

3. The features used in the example of Figure 3 (x,y-
coordinates of paperclip vertices) are biologically

3 implausible. We have also used other more natural



4 reatures such as orientation of lines. An attrac- Hyperbasis Function networks, Multilayer Percep-
tive feature of this module is its recursive nature: trons and regularization (see Girosi, Jones and Pog-
detection and localization of a line of a certain ori- gio, 1993).
entation, say, can be thought of as being performed
by a similar network with centers being units tuned 6. It is also plausible that some of the center-features
to different examples of the desired line type. An are "innate", having being synthesized by evolu-eye detector can localize an eye by storing in its tion or by early experience of the individual or
units templates of several eyes and using as inputs more likely by both. We assume that the adult sys-more elementary features such as lines and blobs, tern has at its disposal a vocabulary of simple asmorae elmeognitay featwores smayse lnis tuned blwell as increasingly more complex center-features.
AOther centers are synthesized on demand in a task-
to specific templates of eyes and nose and so on. Oerecent are synhesi en demand inlaotask
A homogeneous, recursive approach of this type dependent way. This may happen in the followingin hih ot nl ojec rconitonisview-based way. Assume that a network such as the one in
in which not only object recognition is view-based Figure 2 has to learn to recognize a new object. It
but also feature localization is view-based has been myatmtt os yuigsm fteotsuccessfully used in the Beymer-Poggio face recog- may attempt to do so by using some of the out-
nizer (see Beymer, 1993). Both feature detection puts in the pool of existing networks as its inputs.and face recognition depend on theause of several At first no new centers are allocated and only thetemplates, the "examples". linear part of the network is used, correspondingto the term p(x) in equation 1 and to direct con-

4. In this perspective there are probably elementary nections between inputs and output (not shown in
features such as blobs and oriented lines and center- Figure 2). This of course is similar to a simple OR
surround patterns, but there is then a continuum of the input features. Learning may be successful
of increasingly complex features corresponding to in which case only some of the inputs will have a
centers that are conjunctions of more elementary nonzero weight. If learning is not successful - or
ones. In this sense a center is simply a more corn- sufficiently weak - a new center of minimal limen-
plex feature than its inputs and may in turn be the sion may be allocated to mimic a component of one
input to another network with even more complex of the training views. New centers of increasing di-
center-features. mensionality - comprising subsets of components,

5. The RBF network described in the previous sec- up to the full view - are added while old centers are
tions is the simplest version of a more general continually pruned until the performance is satis-
scheme (Hyperbasis Functions) given by factory. Centers of dimension 2 effectively detect

conjunctions of pairs of input features (see also Mel,
n 1992). It is not difficult to imagine learning strate-

f*(x) = • c.G(JI(x - t0 )1) +p(x) (2) gies of this type that would select automatically
a=1 centers, i.e. complex features, that are as view in-

wdcoefficients c are un- variant as possible (this can be achieved by modi-
known, and are in general fewer in number than fying the associated parameters c and/or w in the
kon dandar p ints(n geN).herl fe rm in numberhthn W matrix). Such features may be global - such as
the data points (n o<N). The norm is a weighted color - but we expect that they will be mostly local
norm and perhaps underlie recognition of geon-like com-

ponents (see Edelman, 1991 and Biederman, 1987).

I(X -_ ta)II1y = (X - ta)TWTW(x -_ ta) (3) View-invariant features may be used in basic-levelmore than in subordinate-levels recognition tasks.
where W is an unknown square matrix and the 7. One essential aspect of the simplest (RBF) version
superscript T indicates the transpose. In the sim- of the model is that it contains key units which
pie case of diagonal W the diagonal elements wi are viewer-centered, not object-centered. This as-
assign a specific weight to each input coordinate, pect is independent of whether the model is 2D
determining in fact the units of measure and the or is ichotom whe t her e .impotane ofeac feture(th matix isor 3D, a dichotomy which is not relevant here.
importance of each feature (the matrix W is es- Each center may consist of a set of features that
pecially important in cases in which the input fea- may mix 2D with 3D information, by including
tures are of a different type and their relative im- shading, occlusion or binocular disparity informa-
portance is unknown). During learning, not only tion, for example. The features that depend on
the coefficients c but also the centers t, and the the image geometry will necessarily be viewpoint-
elements of W are updated by instruction on the dependent, but features such as color may be
input-output examples. Whereas the RBF tech- viewpoint-independent. As we mentioned earlier,
nique is similar to and similarly limited as tem- in situations in which view-invariant features exist
plate matching, o m BF networks perform a general- (for basic as well as for subordinate level recogni-
ization of template matching in an appropriately tion) centers may actually be view-independent.linearly transformed space, with the appropriate
metric. As a consequence, H bf networks may "find" 8. The network described here is used as a classifier
view-invariant features when they exist (Bricolo, in that performs identiJication, or subordinate-level
preparation). There are close connections between recognition: matching the face to a stored mem-



ory, and thereby labeling it. A similar network ticularly in terms of biologically plausible implementa-
with a different set of centers could perform also tions. But given a single model view, it is certainly pos-
basic-level recognition: distinguishing objects that sible to generate virtual examples for appropriate image-
are faces from those that are not. plane translations, scalings and rotations without specific

knowledge about the object. This is not the case for the
4 Virtual Views and Invariance to non-image-plane transformations we will consider here,

Image Transformations: towards a caused by, for example, changes in viewpoint, illumina-
tion, facial expression, or physical attitude of a flexible

Recognition Architecture or articulated object such as a body.

In the example given above, the network learns to recog- Within the virtual views theory, there are two extreme

nize a particular 3D object from novel views and thereby ways in which virtual views may be used to ensure in-

achieves one crucial aim in object recognition: viewpoint variance under non-image-plane transformations. The

invariance. But recognition does not involve solely or first one is to precompute all possible "virtual" views of

simply the problem of recognizing objects in hitherto the object or the object class under the desired group

unseen poses. Hence, as Poggio and Hurlbert (1993) of transformations and to use them to train a classi-

emphasize, the cortical architecture for recognition can- fier network such as the one of figure 1. The second

not consist simply of a collection of the modules of Fig- approach - equivalent from the point of view of infor-

ures 3 and 1, one for each recognizable object. The mation processing - is instead to apply all the relevant

architecture must be more complex than that cartoon, transformations to the input image and to attempt to

because recognition must be achieved over a variety of match the transformed image to the data base, which

image transformations, not just those due to changes in under our starting assumption, may contain only one

viewpoint, but also those due to translation, rotation view per object. These two general strategies may exist
and scaling of the object in the image plane, as well in several different variations and can also be mixed in

as non-image-plane transformations, such as those due various ways.
to varying illumination. In addition, the cortex must 4.1 An example
also recognize objects at the basic as well as subordinate
level. Consider as an example of the general recognition strat-

In the network described above, viewpoint invariance egy we propose the following architecture for biological
is achieved by exploiting several sample views of the spe- face recognition based on our own work on artificial face
cific object. This strategy might work to obtain invari- recognition systems (Brunelli and Poggio, 1993; Beymer,
ance under other types of transformations also, provided 1993; see also Gilbert and Yang, 1993).
sufficient examples of the object under sample transfor- First the face has to be localized within the image
mations are available. But suppose that example views and segregated from other objects. This stage might be
are not available. Suppose that the visual system must template-based, and may be equivalent to the use of a
learn to recognize a given object under varying illumi- network like that in Figure 3, with units tuned to the
nation or viewpoint, starting with only a single sample various low-resolution images a face may produce. From
view. This is the problem that we will focus on in the the biological point of view, the network might be real-
next few sections, that of subordinate level recognition ized by the use of low-resolution face detection cells at
under non-image-plane transformations, given only a sin- each location in the visual field (with each location ex-
gle model view. amined at a resolution dictated by the cortical map, in

Probably the most natural solution is for the sys- which the fovea of course dominates), or by connections
tem to exploit certain invariant features, learned from from each location in, say, VI to "centered" templates
examples of objects of the same class. These features (or the equivalent networks) in IT, or by a routing mech-
could supplement the information contained in the sin- anism to achieve the same result with fewer connections
gle model view. Here we will put forward an alternative (see Olshausen et al., 1992). Of course the detection may
scheme which, although possibly equivalent at a compu- be based on disjunction of face components rather than
tational level, may have a very different implementation. on their conjunction in a full face template.
Our proposal is that when sample images of the specific The second step in our face recognizer is to normal-
object under the relevant transformations are not avail- ize the image with respect to translation, scale and im-
able, the system may generate virtual views of that oh- age rotation. This is achieved by finding two anchor
ject, using image-based transformations which are char- points, such as the eyes, again with a template-based
acteristic of the corresponding class of objects (Poggio strategy, equivalent to a network of the type of Figure 1
and Vetter, 1992). We propose that the system learns in which the centers are many templates of eyes of dif-
these transformations from prototypical example views ferent types in different poses and expressions. A similar
of other objects of the same class, with no need for 3D strategy may be followed by biological systems both for
models. The idea is simple but it is not obviously clear faces and other classes of objects. The existence of two
that it will work. We will provide later a plausibility stages would suggest that there are modules dedicated to
argument. detect certain classes of complex features - such as eyes

The problem of achieving invariance to image plane - and other modules that use the result to normalize
transformations such as translation, rotation and scal- the image appropriately. Again there could be eye de-
ing, given only one model view, is also difficult, par- 5 tection networks at each location in the visual field or a
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routing of relevant parts of the image - selected through
segmentation operations - to a central representation in Yrf -IT. m ly .mnop: prototype

The third step in our face recognizer is to match v

the localized, normalized face to a data base of indi- nov: novel input
vidual faces while at the same time providing for view-, / no_

expression- and illumination-invariance. If the data base yp/ y : vectorized image
contains several views of each particular face, the system
may simply compare the normalized image to each item
there (Beymer, 1993): this is equivalent to classifying the
image using the network of Figure 1, one for each person. im
But if the data base contains only a single model view for
each face, which is the problem we consider here, virtual
examples of the face may be generated using transfor-
mations - to other poses and expressions - learned from
examples of other faces (see Beymer, Shashua and Pog-
gio, 1993; Poggio and Vetter, 1992; Poggio and Brunelli,
1992). Then the same approach as for a multi-example
data base may be followed, but in this case most of the
centers will correspond to "virtual examples".

4.2 Transformations and Virtual Examples

In summary, our proposal is to achieve invariance to
non-image- plane transformations by using a sufficient •mgre i.g
number of views of the specific objects for various trans- ..........
formation parameters. If real views are available they
should be used directly; if not, virtual views can be gen-
erated from the real one(s) using image-based transfor-
mations learned from example views of objects of the
same class.

4.2.1 Transformation Networks
How can we learn class-specific transformations from

prototypical exam ples? There are several sim ple tech- - ..........................
nical solutions to this problem, as discussed by Poggio imgP imgp+nov

(1991), Poggio and Brunelli (1992) and Poggio and Vet-
ter (1992). The proposed schemes can "learn" approx-
imate 3D geometry and underlying physics for a suffi-
ciently restricted class of objects - a nice class.3 We
define informally here nice classes of objects as sets of
objects with sufficiently similar transformation proper-
ties. A class of object is nice with respect to one or
more transformations. Faces are a nice class under view-
point transformations because they typically have a sim-
ilar 3D structure. The paperclip objects used by Poggio img - - imgn0 o,. .......
and Edelman (1990), Biilthoff and Edelman (1992 and
in press) and by Logothetis and Pauls (in press) are not
nice under viewpoint transformation because their global
3D structures are different from each other. Poggio and
Vetter describe a special set of nice classes of objects -
"linear classes" . For linear classes, linear networks can
learn appropriate transformations from a set of prototyp-
ical examples. Figure 4 shows how by Beymer, Shashua
and Poggio (1993) used the even simpler technique (lin- ---------------------------
ear additive) of Poggio and Brunelli (1992) for learning imgP iMgP+nOt,
transformations due to face rotation and change of ex-
pression. Figure 4: A face transformation is "learned" from a pro-

'The linear classes definition of Poggio and Vetter(1992) totypical esample transformation. Here, face rotation

may be satisfactory, even if not exact, in a number of practi- and smiling transformations aff represented by proto-

cally interesting situations such as viewpoint invariance and types, yp. Yp is mapped unto the new face image imgno,,.
lighting invariance for faces. The virtual image irg +nov is synthesized by the sys-

6 tem. In a biological implementation cell activities instead
than grey-levels would be the inputs and the outputs of
the transformation. From Beymer. Shashua and Poggio.
1993



In any case, a sufficient number of prototype trans- finally this corrected input view is compared with the
formations - which may involve shape, color, texture, data base of single views. Of course the inverse trans-
shading and other image attributes by using the appro- formation could be applied to each of the views in the
priate features in the vectorized representation of images data base, instead of applying the direct transformation
- should allow the generation of more than one virtual to the input image. We prefer the former strategy be-
view from a single "real" view. The resulting set of vir- cause of computational considerations but mixtures of
tual examples can then be used to train a classification both strategies may be suitable in certain situations.
network. The argument so far is purely on the com- This estimation-transformation route (which may also
putational level and is supported only by preliminary be called analysis-synthesis) leads to an approach to
and partial experiments. It is totally unclear at this recognition in which parameters are estimated from the
point how IT cortex may use similar strategies based input image, then used to "undo" the deformation of
on learning class-specific prototypical transformations. the input image and "visualize" the result, which is then
The alternative model in which virtual examples are not compared to the data base of reference views. A *vi-
explicitly generated and instead view-invariaut features sualization" approach of this type can be naturally em-
are learned is also attractive. Since networks such as bedded in an iterative or feedback scheme in which dis-
Multilayer Perceptrons and HyperBasis Function net- crepancies between the visualized estimate and the in-
works may "find" some view-invariant features the two put image drives further cycles of analysis-synthesis and
approaches may actually be used simultaneously. comparison (see Mumford, 1992). It may also be rel-

evant in explaining a role in mental "imagery" of the
4.3 An Alternative Visualization Route? neurons in IT (see Sakai and Miyashita, 1991).
As we hinted earlier, an alternative implementation of A few remarks follow:
the same approach to invariant recognition from a single 1. Transformation parameters may be estimated from
model view is to transform the (normalized) input imageusing the learned transformations and compare each one images of objects of a class; some degree of viewinvariance may therefore be achievable for new ob-
of the resulting virtual views to the available real views jects of a known class (such as faces or bilaterally
(in this case only one per specific object). As pointed outby U~ma (191) th cotex ay erfrm he equredsymmetric objects (see Poggio and Vetter, 1992)).
by Ullman (1991), the cortex may perform the required This should be impossible for unique objects forsearch by generating simultaneously transformations of which prior class knowledge may not be used (such
both the input image and the model views until a match
is found. as the paperclip objects, B2lthoff and Edelman,

The number of transformations to be tested may be 1992).
reduced by first estimating the approximate pose and 2. From the computational point of view it is possible
expression parameters of the input image. The estimate that a "coarse" 3D model - rather like a marionette
may be provided by a RBF-like network of the "analy- - could be used successfully to compute various
sis" type in which the centers are generic face prototypes transformations typical for a certain class of ob-
(or face parts) spanning different poses, expressions and jects (such as faces) to control 2D representations
possibly illuminations4 . They can be used if trained ap- of the type described earlier for each specific ob-
propriately to do the analysis task of estimating state ject. Biologically, this coarse 3D model may be
parameters associated with the image of the object such implemented in terms of learned transformations
as its pose in space, its expression (if a face), its illu- characteristic for the class.
mination etc. (see Poggio and Edelman, 1990; Beymer, 3. We believe that the classification approach - the
Shashua and Poggio, 1993). one summarized by figures 1, 3, as opposed to the

The corresponding transformation will then be per- visualization approach - is the main route to recog-
formed by networks (linear or of a more general type).5  nition, which should be used with real example
Analysis-type networks may help reduce dramatically views when a sufficient number of training views
the number of transformations to be tried before suc- is available. Notice that this approach is memory-
cessful recognition is achieved. A particular version of based and in the extreme case of many training
the idea is the following. views should be very similar to a look-up table.

Assume that the data base consists of single views of When only one or very few views of the specific ob-
different, say, faces in a "zero" pose. Then in the vi- ject are available, the classification approach may
sualization route the analysis network provides an esti- still suffice, if either a) view-invariant features are
mate of "pose" parameters; a synthesis network (Poggio discovered and then used or b) virtual examples
and Brunelli, 1992; Librande, 1992; Beymer, Shashua generated by the transformation approach are ex-
and Poggio, 1993) generates the corresponding view of a ploited. But this is possible only for objects be-
prototype; the transformation from the latter prototype longing to a familiar class (such as faces). The
view to the reference view of the prototype is computed analysis-synthesis route may be an additional, sec-
and applied to the input array to obtain its "zero" view; ondary strategy to deal with only one or very few

real model views 6
4Invariance to illumination can be in part achieved by ap-

propriate preprocessing 6It turns out that the RBF-like classification scheme and
'Of course in all of the modules described above the cen- its implementation in terms of view-centered units is quite

ters may be parts of the face rather than the full face. 7 different from the linear combination scheme of Ullman and



4. We have assumed here a supervised learning frame- given task. This means that the "and" of a high-
work. Unsupervised learning may not be of real bi- dimensional conjunction can be replaced by the
ological interest because various natural cues (ob- "or" of its components - a face may be recognized
ject constancy, sensorimotor cues etc.) usually pro- by its eyebrows alone, or a mug by its colour. To
vide the equivalent of supervised learning. Unsu- recognize an object, we may use not only templates
pervised learning may be achieved by using either comprising all its features, but also subtemplates,
a bootstrap approach (see Poggio, Edelman and comprising subsets of features. Splitting the rec-
Fahle 1992) or an appropriate cost-functional for ognizable world into its additive parts may well be
learning or special network architectures. preferable to reconstructing it in its full multidi-

mensionality, because a system composed of several
5 Critical predictions and experimental independently accessible parts is inherently more

data robust than a whole simultaneously dependent on
each of its parts. The small loss in uniqueness of

In this section we list a few points that may lead to in- recognition is easily offset by the gain against noise
teresting experiments both in psychophysics and physi- and occlusions and the much lower requirements on
ology. system connectivity and complexity.

Predictions: o View-invariant features. For many objects and

* Viewer-centered and object-centered cells, recognition tasks there may exist features that are

Our model (see the module of Figure 2) predicts invariant at least to some extent (colour is an ex-

the existence of viewer-centered cells (in the "hid- treme example). One would expect this situation

den" layer) and object-centered cells (the output of to occur especially in basic-level recognition tasks

the network). Evidence pointing in this direction (but not only). In this case networks with one or
in the case of face cells in IT is already available, very few centers and hidden units - each one be-

We predict a similar situation for other 3D objects. ing invariant - may suffice. One or very few model
It should be noted that the module of Figure 2 is views may suffice.
only a small part of an overall architecture. We o Generalization from a single view for "nice"
expect therefore to find other types of cells, such and "not nice" object classes. An example of
as for instance pose-tuned, expression-tuned and a recognition field measured psychophysically for
illumination-tuned cells. Very recently N. Logo- an asymmetric object of a "not nice" class after
thetis and Pauls (in press) have succeeded in train- training with a single view is shown in figure 5.
ing monkeys to the same objects used in human As predicted from the model (see Poggio and Edel-
psychophysics and in reproducing the key results man, 1990), the shape of the surface of the recog-
of Balthoff and Edelman (1992). As we mentioned nition errors is bell-shaped and is centered on the
above, he also succeeded in measuring generaliza- training view. If the object belongs to a familiar
tion fields of the type shown in Figure 5 after train- and "nice" class of objects - such as faces - then
ing on a single view. We believe that such a psy- generalization from a single view is expected to be
chophysically measured generalization field corre- better and broader because information equivalent
sponds to a group of cells tuned in a Gaussian-like to additional virtual example views can be gener-
manner to that view. We conjecture (though this ated from familiar examples of other objects of the
is not a critical prediction of the theory) that the same class. Ullman, Moses and Edelman (1993)
step of creating the tuned cells, i.e. the centers, report evidence consistent with this view. They
is unsupervised: in other words it would be sliffi- use two "nice" classes of objects, one familiar - up-
cient to expose the monkeys to the objects without right faces - and one unfamiliar - inverted faces.
actually training them to respond in specific ways. They find that generalization from a single train-

* Cells tuned to full views and cells tuned to ing view over a range of viewpoint and illumina-
parts. As we mentioned, we expect to find high- tion transformations is perfect for the familiar class

dimensional as well as low-dimensional centers, cor- and significantly worse for the unfamiliar inverted
responding to full templates and template parts. faces. They also report that generalization in the
Physiologically this corresponds to cells that re- latter case improved with practice, as expected in
quire the whole object to respond (say, a face) as our model.
well as cells that respond also when only a part of Notice again that instead of creating virtual views
the object is present (say, the mouth). the system may discover features that are view in-

Computationally, this means that instead of high- variant for the given class of objects and then use
dimensional centers any of several lower dimen- them.
sional centers are often sufficient to perform a Generalization for bilaterally symmetric ob-

Basri (1990). On the other hand a regularization network jects. Bilaterally symmetric objects - or objects
used for synthesis - in which the output is the image y - that may seem bilaterally symmetric from a sin-
is similar to their linear combination scheme (though more gle view - are a special example of nice classes.
general) because its output is always a linear combination of They are expected from the theory (Poggio and
the example views (see Beymer, Poggio and Shashua, 1993). Vetter, 1992) to have a generalization field with



additional peaks. The prediction is consistent with
old and new psychophysical (Vetter, Poggio and
Biilthoff, 1994) and physiological data (Logothetis
and Pauls, in press).

Figure 5: The generalization field associated with a sin-
gle training view. Whereas it is easy to distinguish be-
tween, say, tubular and amoeba-like 3D objects, irre-
spective of their orientation, the recognition error rate
for specific objects within each of those two categories
increases sharply with misorientation relative to the fa-
miliar view. This figure shows that the error rate for
amoeba-like objects, previously seen from a iingle atti-
tude, is viewpoint-dependent. Means of error rates of six
subjects and six different objects are plotted vs. rotation
in depth around two orthogonal axes (Bilthoff, Edelman
and Sklar, 1991; Edelman and Bilthoff, 1992). The ex-
tent of rotation was ±600 in each direction; the center of
the plot corresponds to the training attitude. Shades of
gray encode recognition rates, at increments of 5% (white
is better than 90%; black is 50%). From Bilthoff and
Edelman (1992). As predicted by our model viewpoint
independence can be achieved by familiarizing the sub-
ject with a sufficient number of real training views of the
3D object. For objects of a nice class the generalization
field may be broader because of the possible availability
of virtual views of sufficient quality.
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